切换到宽版
北斗六星!·百事通·查看新帖·设为首页·手机版

北斗六星网

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
北斗六星网 六星时事 六星杂谈 关于博弈论与纳什均衡(转)
查看: 2302|回复: 11
打印 上一主题 下一主题

关于博弈论与纳什均衡(转) [复制链接]

跳转到指定楼层
发表于 2015-5-25 18:07 |只看该作者 |正序浏览 |
搜索本主题
本帖最后由 孤鸿野鹤 于 2015-5-25 18:17 编辑




奥斯卡获奖电影《美丽心灵》主角原型、诺贝尔奖得主、美国数学家约翰-纳什日前与妻子在美国新泽西州乘搭的士时遇上车祸,两人均不幸遇难。事发当时,这辆出租车失控撞向栏杆,两人均被抛出车外。
   

    约翰-纳什因发表两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。

    不均衡人生中孕育出均衡论
   

    纳什于1928年在美国西弗吉尼亚州出生,曾在麻省理工学院任教,晚年为普林斯顿大学担任数学系教授,死前与82岁妻子艾丽西亚在普林斯顿居住。纳什以研究博弈论闻名,1994年获颁诺贝尔经济学奖。他的理论被运用在市场经济、计算、演化生物学、人工智能、会计、政策和军事理论等多个领域。

    纳什在数学领域上取得多项突破,但他同时深受精神分裂症困扰,其生平故事在2001年被改编成电影《美丽心灵》,赢得包括最佳电影在内的4项奥斯卡奖项。

    尽管西维亚-纳萨斯(Sylvia Nasars)广为人知的小说《美丽心灵》(A Beautiful Mind)和改编自该书的、由拉塞尔-克罗(Russell Crowe)主演的同名奥斯卡电影探究了纳什错综复杂的生平,但都没有深入挖掘他的数学思想。他的数学成果依然不被大众所熟知。在当今科学界,人们普遍认为,与牛顿和爱因斯坦的数学理论相比,纳什的数学理论触及到的学科更多。牛顿和爱因斯坦的数学旨在处理物理问题,而纳什的数学却可以应用在生物学和社会学领域。

    如若不是精神疾病的困扰,纳什今天可能已与那些科学伟人齐名。尽管如此,他在几个数学领域的重要贡献大家有目共睹。他最大的成就来自于经济学方面。由于他在博弈论上的开创性成就,他与约翰海萨尼(John Harsanyi)和莱茵哈德-泽尔腾(Reinhard Selten)一起获得了1994年诺贝尔经济学奖。

    什么是博弈论与纳什均衡

    博弈论 :亦名“对策论”、“赛局理论”,属应用数学的一个分支,主要研究公式化了的激励结构间的相互作用。是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡:又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰-纳什命名。假设有n人局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。

    近代对于博弈论的研究,开始于策墨咯,波雷尔及冯-诺伊曼。1928年,冯-诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯-诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。1950~1951年,约翰-福布斯-纳什利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。博弈论起源于研究人们玩扑克(poker)、象棋(chess)等室内游戏时的行为决策,后来作为一种研究人类经济行为的数学工具得到了充分的发展。从根本上讲,博弈论涉及到从打网球到指挥战争的任何牵扯策略的情景。博弈论提供了一种计算各种可能决策所产生效益的数学方法,该理论为在各种竞赛性场合做出最佳决定建立了一套具体的数学公式。正如经济学家赫伯特-金迪斯(Herbert Gintis)所说,博弈论是我们“研究世界的一种工具”。但它不仅仅是一种工具,“它不仅研究人们如何合作,而且研究人们如何竞争”。同时,“博弈论还研究行为方式的产生、转变、散播和稳定。”

    博弈论与纳什均衡的发展和应用

    博弈论不是纳什发明的,但他扩大了该理论的范围,为之提供了解决实际问题的更有力工具。在一开始,他的研究成果并没有受到人们的重视。他的文章发表在20世纪50年代,在当时博弈论仅在冷战分析家之间流传,这些分析家认为国际侵略和利益最大化之间有一些相似之处。在经济学界,博弈论还被视为一种新奇事物。经济学家萨缪-鲍尔斯(Samuel Bowles)告诉我说:“在当时博弈论羽翼未丰,如同经济学中其它许多优秀的思想一样,它还没有受到人们的关注。”

    然而在20世纪70年代时情况发生了改变,进化论学派的生物学家开始采用博弈论研究动植物中的生存竞争现象。紧接着在20世纪80年代,经济学家终于开始以各种不同方式将博弈论应用于经济学中,尤其是将它用在设计真实试验以验证经济学理论方面。到80年代末博弈论在经济学领域已经充分显示了它的作用, 这最终促成了纳什等1994年诺贝尔经济学奖的获得。
早在此之前,博弈论就已经出现在许多学科的课程中。数学系、经济学系、生物学系、还有政治科学系、心理学系和社会科学系的课程中都含有博弈论的内容。到了21世纪初,博弈论的应用更为广泛,涉及到从人类学到神经生物学等 多个领域。

    现今,经济学家继续使用博弈论分析人们如何做出有关金钱的决策;生物学家用它来建立假说以解释适者生存原理和利他主义的起源;人类学家使用它来研究原始文化,从而说明人性的多样化;神经科学者也加入了博弈论研究的行列,通过研究博弈者的大脑,试图发现决策如何反映人们的动机和情感。
简言之,纳什的数学理论连同在其在其基础上建立起来的现代博弈论已经成为科学家研究众多与人类行为相关课题时的首选方法。

    博弈论和纳什均衡的几个经典案例

    【智猪博弈(Pigs’payoffs)】猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。

    【枪手博弈】王者的悲哀。三人对枪自决,甲乙丙枪法优劣递减。最后无奈而神奇的结局,将不取决于同时开枪还是先后开枪,最优良的枪手,倒下的概率将最高;而最蹩脚的枪手,存活的希望却最大。因为没有人会把威胁最小的枪手列为一号清楚目标。在这里,后发制人的弱势者将胜出。以弱胜强,绝不是神话。

    【囚徒困境】假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
关于这个案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当-斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如A坦白,B抵赖,B得坐10年监狱,B坦白最多才8年;B要是抵赖,A就可以被释放,而B会坐10年牢。综合以上几种情况考虑,不管A坦白与否,对B而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。

    博弈论和纳什均衡的重要影响

    博弈论所研究的是理性的决策者之间冲突及合作的理论,可以为实际决策提供理论基础和方向指导。其最终追求结果是使博弈方达到利益最大化的均衡。在生活中,博弈仍然无处不在。博弈论代表着一种全新的分析方法和全新的思想。诺贝尔经济学奖获得者保罗-萨缪尔逊如是说:要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解也可以这样说,要想赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。

    纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,正如克瑞普斯(Kreps,1990)在《博弈论和经济建模》一书的引言中所说,“在过去的一二十年内,经济学在方法论以及语言、概念等方面,经历了一场温和的革命,非合作博弈理论已经成为范式的中心,在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘消费’近期文献的领域。”

转自(腾讯财经综合)


附件: 您需要 登录 才可以下载或查看,没有帐号?立即注册
分享到: QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
分享分享0 收藏收藏0 顶0 踩0

11
发表于 2015-5-27 19:16 |只看该作者
提示: 作者被禁止或删除 仅保留发帖内容
本帖最后由 诗夊哥 于 2015-5-27 19:25 编辑

谢谢版首的好介绍!

使用道具 举报

10
发表于 2015-5-27 17:51 |只看该作者
刘创驾到 发表于 2015-5-27 17:09
哥你咋还转上了?这也不是你性格


我对博弈论及纳什均衡的了解,仅限于读了点普及性的入门知识。
不像你理工科的钻研起来那么嗜血疯狂。
看到这个帖子写的挺好,就转了。
呵呵,其实我想到你了,相信你对博弈论有研究,其实我是期待你来写这个帖子的。

使用道具 举报

9
发表于 2015-5-27 17:09 |只看该作者
哥你咋还转上了?这也不是你性格

使用道具 举报

8
发表于 2015-5-27 15:39 |只看该作者
色妞妞 发表于 2015-5-26 21:30
看过美丽心灵这部电影,就知道是以纳什为原型的。这部电影为必看电影之一。
这对夫妇都是惊人的美丽。

看了。不仅仅是惊人的美。
更多的震撼,来自于心灵。

使用道具 举报

7
发表于 2015-5-27 10:37 来自手机 |只看该作者
呵,引发看的兴趣。

使用道具 举报

6
发表于 2015-5-26 08:15 |只看该作者
有人要建立均衡,有人要破坏均衡,建立与破坏均衡都是为了谋求利益的最大化,破坏也好建立也好都需要合作,做一个好的合伙人必须听得懂对方。

使用道具 举报

5
发表于 2015-5-25 23:08 |只看该作者
我也看到这篇,要是转过来也够大磨叽忙活的。

使用道具 举报

地板
发表于 2015-5-25 18:38 |只看该作者
通过纳什均衡很容易理解现在很多的宏观矛盾,比如社会公共问题、国际竞争、市场竞争,他这个理论为破解看似悖论的问题,如个体的理性与集体非理性矛盾提供了或许非最佳但至少是折中方案的一把钥匙。

使用道具 举报

板凳
发表于 2015-5-25 18:12 |只看该作者
本帖最后由 孤鸿野鹤 于 2015-5-25 18:19 编辑

居然有这么巧的事,前两天蔡诚出了一道博弈题,这几天正磨叽呢,正在看博弈论的中纳什均衡。

今天纳什因车祸去世了。

不用我写了,网上的文章比咱写的好,转一篇了解一下纳什和他的非合作均衡理论。

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

北斗六星文学网所有文字仅代表作者个人言论,本站不对其内容承负任何责任。

Copyright ©2011 bdlxbbs.cn All Right Reserved.  Powered by Discuz! 

本站信息均由会员发表,不代表本网站立场,如侵犯了您的权利请发帖投诉   

平平安安
TOP
返回顶部